Skip to main content
Version: 1.0.7

Deep Learning - Flower Image Classification

from pyspark.ml import Transformer, Estimator, Pipeline
from pyspark.ml.classification import LogisticRegression
import sys, time
# Load the images
# use flowers_and_labels.parquet on larger cluster in order to get better results
imagesWithLabels = (
spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/flowers_and_labels2.parquet"
)
.withColumnRenamed("bytes", "image")
.sample(0.1)
)

imagesWithLabels.printSchema()

Smiley face

from synapse.ml.opencv import ImageTransformer
from synapse.ml.image import UnrollImage
from synapse.ml.onnx import ImageFeaturizer
from synapse.ml.stages import *

# Make some featurizers
it = ImageTransformer().setOutputCol("scaled").resize(size=(60, 60))

ur = UnrollImage().setInputCol("scaled").setOutputCol("features")

dc1 = DropColumns().setCols(["scaled", "image"])

lr1 = (
LogisticRegression().setMaxIter(8).setFeaturesCol("features").setLabelCol("labels")
)

dc2 = DropColumns().setCols(["features"])

basicModel = Pipeline(stages=[it, ur, dc1, lr1, dc2])
resnet = (
ImageFeaturizer().setInputCol("image").setOutputCol("features").setModel("ResNet50")
)

dc3 = DropColumns().setCols(["image"])

lr2 = (
LogisticRegression().setMaxIter(8).setFeaturesCol("features").setLabelCol("labels")
)

dc4 = DropColumns().setCols(["features"])

deepModel = Pipeline(stages=[resnet, dc3, lr2, dc4])

Resnet 18

How does it work?

Convolutional network weights

Run the experiment

def timedExperiment(model, train, test):
start = time.time()
result = model.fit(train).transform(test).toPandas()
print("Experiment took {}s".format(time.time() - start))
return result
train, test = imagesWithLabels.randomSplit([0.8, 0.2])
train.count(), test.count()
basicResults = timedExperiment(basicModel, train, test)
deepResults = timedExperiment(deepModel, train, test)

Plot confusion matrix.

import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import numpy as np


def evaluate(results, name):
y, y_hat = results["labels"], results["prediction"]
y = [int(l) for l in y]

accuracy = np.mean([1.0 if pred == true else 0.0 for (pred, true) in zip(y_hat, y)])
cm = confusion_matrix(y, y_hat)
cm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis]

plt.text(
40, 10, "$Accuracy$ $=$ ${}\%$".format(round(accuracy * 100, 1)), fontsize=14
)
plt.imshow(cm, interpolation="nearest", cmap=plt.cm.Blues)
plt.colorbar()
plt.xlabel("$Predicted$ $label$", fontsize=18)
plt.ylabel("$True$ $Label$", fontsize=18)
plt.title("$Normalized$ $CM$ $for$ ${}$".format(name))


plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
evaluate(deepResults, "CNTKModel + LR")
plt.subplot(1, 2, 2)
evaluate(basicResults, "LR")
# Note that on the larger dataset the accuracy will bump up from 44% to >90%
display(plt.show())